Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A regulatory circuit between lncRNA and TOR directs amino acid uptake in yeast.

Identifieur interne : 000156 ( Main/Exploration ); précédent : 000155; suivant : 000157

A regulatory circuit between lncRNA and TOR directs amino acid uptake in yeast.

Auteurs : Ankita Awasthi [Inde] ; Vikrant Nain [Inde] ; Chittur V. Srikanth [Inde] ; Rekha Puria [Inde]

Source :

RBID : pubmed:32081726

Descripteurs français

English descriptors

Abstract

Long non coding RNAs (lncRNAs) have emerged as crucial players of several central cellular processes across eukaryotes. Target of Rapamycin (TOR) is a central regulator of myriad of fundamental cellular processes including amino acid transport under diverse environmental conditions. Here we investigated the role of lncRNA in TOR regulated amino acid uptake in S. cerevisiae. Transcription of lncRNA regulates local gene expression in eukaryotes. In silico analysis of many genome wide studies in S. cerevisiae revealed that transcriptome includes conditional expression of numerous lncRNAs in proximity to amino acid transporters (AATs). Considering regulatory role of these lncRNAs, we selected highly conserved TOR regulated locus of a pair of AATs present in tandem BAP2 and TAT1. We observed that the expression of antisense lncRNA XUT_2F-154 (TBRT) and AATs BAP2 and TAT1 depends on activities of TOR signaling pathway. The expression of TBRT is induced, while that of BAP2 TAT1 is repressed upon TOR inhibition by Torin2. Notably, upon TOR inhibition loss of TBRT contributed to enhanced activities of Bap2 and Tat1 leading to improved growth. Interestingly, nucleosome scanning assay reveal that TOR signaling pathway governs chromatin remodeling at BAP2 biphasic promoter to control the antagonism of TBRT and BAP2 expression. Further TBRT also reprograms local chromatin landscapes to decrease the transcription of TAT1. The current work demonstrates a functional correlation between lncRNA production and TOR governed amino acid uptake in yeast. Thus this work brings forth a novel avenue for identification of potential regulators for therapeutic interventions against TOR mediated diseases.

DOI: 10.1016/j.bbamcr.2020.118680
PubMed: 32081726


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A regulatory circuit between lncRNA and TOR directs amino acid uptake in yeast.</title>
<author>
<name sortKey="Awasthi, Ankita" sort="Awasthi, Ankita" uniqKey="Awasthi A" first="Ankita" last="Awasthi">Ankita Awasthi</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biotechnology, Gautam Buddha University, Greater Noida, Gautam Budh Nagar 201312, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>School of Biotechnology, Gautam Buddha University, Greater Noida, Gautam Budh Nagar 201312</wicri:regionArea>
<wicri:noRegion>Gautam Budh Nagar 201312</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nain, Vikrant" sort="Nain, Vikrant" uniqKey="Nain V" first="Vikrant" last="Nain">Vikrant Nain</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biotechnology, Gautam Buddha University, Greater Noida, Gautam Budh Nagar 201312, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>School of Biotechnology, Gautam Buddha University, Greater Noida, Gautam Budh Nagar 201312</wicri:regionArea>
<wicri:noRegion>Gautam Budh Nagar 201312</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Srikanth, Chittur V" sort="Srikanth, Chittur V" uniqKey="Srikanth C" first="Chittur V" last="Srikanth">Chittur V. Srikanth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Regional Centre for Biotechnology, NCR Biotech Cluster 3rd Milestone, Gurgaon-Faridabad Highway, Village Bhankari, Faridabad, Haryana, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Regional Centre for Biotechnology, NCR Biotech Cluster 3rd Milestone, Gurgaon-Faridabad Highway, Village Bhankari, Faridabad, Haryana</wicri:regionArea>
<wicri:noRegion>Haryana</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Puria, Rekha" sort="Puria, Rekha" uniqKey="Puria R" first="Rekha" last="Puria">Rekha Puria</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biotechnology, Gautam Buddha University, Greater Noida, Gautam Budh Nagar 201312, India. Electronic address: rpuria@gbu.ac.in.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>School of Biotechnology, Gautam Buddha University, Greater Noida, Gautam Budh Nagar 201312</wicri:regionArea>
<wicri:noRegion>Gautam Budh Nagar 201312</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32081726</idno>
<idno type="pmid">32081726</idno>
<idno type="doi">10.1016/j.bbamcr.2020.118680</idno>
<idno type="wicri:Area/Main/Corpus">000113</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000113</idno>
<idno type="wicri:Area/Main/Curation">000113</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000113</idno>
<idno type="wicri:Area/Main/Exploration">000113</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A regulatory circuit between lncRNA and TOR directs amino acid uptake in yeast.</title>
<author>
<name sortKey="Awasthi, Ankita" sort="Awasthi, Ankita" uniqKey="Awasthi A" first="Ankita" last="Awasthi">Ankita Awasthi</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biotechnology, Gautam Buddha University, Greater Noida, Gautam Budh Nagar 201312, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>School of Biotechnology, Gautam Buddha University, Greater Noida, Gautam Budh Nagar 201312</wicri:regionArea>
<wicri:noRegion>Gautam Budh Nagar 201312</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nain, Vikrant" sort="Nain, Vikrant" uniqKey="Nain V" first="Vikrant" last="Nain">Vikrant Nain</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biotechnology, Gautam Buddha University, Greater Noida, Gautam Budh Nagar 201312, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>School of Biotechnology, Gautam Buddha University, Greater Noida, Gautam Budh Nagar 201312</wicri:regionArea>
<wicri:noRegion>Gautam Budh Nagar 201312</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Srikanth, Chittur V" sort="Srikanth, Chittur V" uniqKey="Srikanth C" first="Chittur V" last="Srikanth">Chittur V. Srikanth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Regional Centre for Biotechnology, NCR Biotech Cluster 3rd Milestone, Gurgaon-Faridabad Highway, Village Bhankari, Faridabad, Haryana, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Regional Centre for Biotechnology, NCR Biotech Cluster 3rd Milestone, Gurgaon-Faridabad Highway, Village Bhankari, Faridabad, Haryana</wicri:regionArea>
<wicri:noRegion>Haryana</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Puria, Rekha" sort="Puria, Rekha" uniqKey="Puria R" first="Rekha" last="Puria">Rekha Puria</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biotechnology, Gautam Buddha University, Greater Noida, Gautam Budh Nagar 201312, India. Electronic address: rpuria@gbu.ac.in.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>School of Biotechnology, Gautam Buddha University, Greater Noida, Gautam Budh Nagar 201312</wicri:regionArea>
<wicri:noRegion>Gautam Budh Nagar 201312</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biochimica et biophysica acta. Molecular cell research</title>
<idno type="eISSN">1879-2596</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Transport Systems (genetics)</term>
<term>Amino Acid Transport Systems (metabolism)</term>
<term>Amino Acids (metabolism)</term>
<term>Chromatin Assembly and Disassembly (drug effects)</term>
<term>Gene Expression Regulation, Fungal (drug effects)</term>
<term>Naphthyridines (pharmacology)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>RNA, Fungal (genetics)</term>
<term>RNA, Long Noncoding (genetics)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (drug effects)</term>
<term>Transcription, Genetic (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN fongique (génétique)</term>
<term>ARN long non codant (génétique)</term>
<term>Acides aminés (métabolisme)</term>
<term>Assemblage et désassemblage de la chromatine (effets des médicaments et des substances chimiques)</term>
<term>Naphtyridines (pharmacologie)</term>
<term>Protein-Serine-Threonine Kinases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes fongiques (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Systèmes de transport d'acides aminés (génétique)</term>
<term>Systèmes de transport d'acides aminés (métabolisme)</term>
<term>Transcription génétique (effets des médicaments et des substances chimiques)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Amino Acid Transport Systems</term>
<term>RNA, Fungal</term>
<term>RNA, Long Noncoding</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acid Transport Systems</term>
<term>Amino Acids</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Chromatin Assembly and Disassembly</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Signal Transduction</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Assemblage et désassemblage de la chromatine</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Transcription génétique</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN fongique</term>
<term>ARN long non codant</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Systèmes de transport d'acides aminés</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides aminés</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Systèmes de transport d'acides aminés</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Naphtyridines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Naphthyridines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régions promotrices (génétique)</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Long non coding RNAs (lncRNAs) have emerged as crucial players of several central cellular processes across eukaryotes. Target of Rapamycin (TOR) is a central regulator of myriad of fundamental cellular processes including amino acid transport under diverse environmental conditions. Here we investigated the role of lncRNA in TOR regulated amino acid uptake in S. cerevisiae. Transcription of lncRNA regulates local gene expression in eukaryotes. In silico analysis of many genome wide studies in S. cerevisiae revealed that transcriptome includes conditional expression of numerous lncRNAs in proximity to amino acid transporters (AATs). Considering regulatory role of these lncRNAs, we selected highly conserved TOR regulated locus of a pair of AATs present in tandem BAP2 and TAT1. We observed that the expression of antisense lncRNA XUT_2F-154 (TBRT) and AATs BAP2 and TAT1 depends on activities of TOR signaling pathway. The expression of TBRT is induced, while that of BAP2 TAT1 is repressed upon TOR inhibition by Torin2. Notably, upon TOR inhibition loss of TBRT contributed to enhanced activities of Bap2 and Tat1 leading to improved growth. Interestingly, nucleosome scanning assay reveal that TOR signaling pathway governs chromatin remodeling at BAP2 biphasic promoter to control the antagonism of TBRT and BAP2 expression. Further TBRT also reprograms local chromatin landscapes to decrease the transcription of TAT1. The current work demonstrates a functional correlation between lncRNA production and TOR governed amino acid uptake in yeast. Thus this work brings forth a novel avenue for identification of potential regulators for therapeutic interventions against TOR mediated diseases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32081726</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-2596</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>1867</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2020</Year>
<Month>06</Month>
</PubDate>
</JournalIssue>
<Title>Biochimica et biophysica acta. Molecular cell research</Title>
<ISOAbbreviation>Biochim Biophys Acta Mol Cell Res</ISOAbbreviation>
</Journal>
<ArticleTitle>A regulatory circuit between lncRNA and TOR directs amino acid uptake in yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>118680</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0167-4889(20)30038-0</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bbamcr.2020.118680</ELocationID>
<Abstract>
<AbstractText>Long non coding RNAs (lncRNAs) have emerged as crucial players of several central cellular processes across eukaryotes. Target of Rapamycin (TOR) is a central regulator of myriad of fundamental cellular processes including amino acid transport under diverse environmental conditions. Here we investigated the role of lncRNA in TOR regulated amino acid uptake in S. cerevisiae. Transcription of lncRNA regulates local gene expression in eukaryotes. In silico analysis of many genome wide studies in S. cerevisiae revealed that transcriptome includes conditional expression of numerous lncRNAs in proximity to amino acid transporters (AATs). Considering regulatory role of these lncRNAs, we selected highly conserved TOR regulated locus of a pair of AATs present in tandem BAP2 and TAT1. We observed that the expression of antisense lncRNA XUT_2F-154 (TBRT) and AATs BAP2 and TAT1 depends on activities of TOR signaling pathway. The expression of TBRT is induced, while that of BAP2 TAT1 is repressed upon TOR inhibition by Torin2. Notably, upon TOR inhibition loss of TBRT contributed to enhanced activities of Bap2 and Tat1 leading to improved growth. Interestingly, nucleosome scanning assay reveal that TOR signaling pathway governs chromatin remodeling at BAP2 biphasic promoter to control the antagonism of TBRT and BAP2 expression. Further TBRT also reprograms local chromatin landscapes to decrease the transcription of TAT1. The current work demonstrates a functional correlation between lncRNA production and TOR governed amino acid uptake in yeast. Thus this work brings forth a novel avenue for identification of potential regulators for therapeutic interventions against TOR mediated diseases.</AbstractText>
<CopyrightInformation>Copyright © 2020 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Awasthi</LastName>
<ForeName>Ankita</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>School of Biotechnology, Gautam Buddha University, Greater Noida, Gautam Budh Nagar 201312, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nain</LastName>
<ForeName>Vikrant</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>School of Biotechnology, Gautam Buddha University, Greater Noida, Gautam Budh Nagar 201312, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Srikanth</LastName>
<ForeName>Chittur V</ForeName>
<Initials>CV</Initials>
<AffiliationInfo>
<Affiliation>Regional Centre for Biotechnology, NCR Biotech Cluster 3rd Milestone, Gurgaon-Faridabad Highway, Village Bhankari, Faridabad, Haryana, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Puria</LastName>
<ForeName>Rekha</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>School of Biotechnology, Gautam Buddha University, Greater Noida, Gautam Budh Nagar 201312, India. Electronic address: rpuria@gbu.ac.in.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Biochim Biophys Acta Mol Cell Res</MedlineTA>
<NlmUniqueID>101731731</NlmUniqueID>
<ISSNLinking>0167-4889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C558529">9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo(h)(1,6)naphthyridin-2(1H)-one</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026905">Amino Acid Transport Systems</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C097094">BAP2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009287">Naphthyridines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012331">RNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D062085">RNA, Long Noncoding</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C470089">TAT1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C500749">target of rapamycin protein, S cerevisiae</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D026905" MajorTopicYN="N">Amino Acid Transport Systems</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042002" MajorTopicYN="N">Chromatin Assembly and Disassembly</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009287" MajorTopicYN="N">Naphthyridines</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012331" MajorTopicYN="N">RNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062085" MajorTopicYN="N">RNA, Long Noncoding</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Amino acid transporters</Keyword>
<Keyword MajorTopicYN="Y">Bidirectional transcription,</Keyword>
<Keyword MajorTopicYN="Y">Biphasic promoter</Keyword>
<Keyword MajorTopicYN="Y">Divergent transcription</Keyword>
<Keyword MajorTopicYN="Y">TOR</Keyword>
<Keyword MajorTopicYN="Y">Torin2</Keyword>
<Keyword MajorTopicYN="Y">lncRNA</Keyword>
</KeywordList>
<CoiStatement>Declaration of competing interest Authors declare no conflict of Interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>02</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32081726</ArticleId>
<ArticleId IdType="pii">S0167-4889(20)30038-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.bbamcr.2020.118680</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Awasthi, Ankita" sort="Awasthi, Ankita" uniqKey="Awasthi A" first="Ankita" last="Awasthi">Ankita Awasthi</name>
</noRegion>
<name sortKey="Nain, Vikrant" sort="Nain, Vikrant" uniqKey="Nain V" first="Vikrant" last="Nain">Vikrant Nain</name>
<name sortKey="Puria, Rekha" sort="Puria, Rekha" uniqKey="Puria R" first="Rekha" last="Puria">Rekha Puria</name>
<name sortKey="Srikanth, Chittur V" sort="Srikanth, Chittur V" uniqKey="Srikanth C" first="Chittur V" last="Srikanth">Chittur V. Srikanth</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000156 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000156 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32081726
   |texte=   A regulatory circuit between lncRNA and TOR directs amino acid uptake in yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32081726" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020